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An ontology designer’s world

• Requirements

• Logical constructs

• Existing ontologies

• Informal knowledge resources

• Conventions and practices

• Tools (editors, reasoners, translators, ...)

The cultural context of ontologies
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A well-designed ontology ...

• Obeys to “capital questions”:
– What are we talking about?

– Why do we want to talk about it?

– Where to find reusable knowledge?

• Whats, whys and wheres constitute the 
Problem Space of an ontology project

• Ontology designers need to find solutions 
from a Solution Space

• Matching problems to solutions is not trivial

What is ontology design?

• Ontologies are artifacts

– Have a structure (linguistic, “taxonomical”, logical)

– Their function is to “encode” a description of the world (actual, possible, 

counterfactual, impossible, desired, etc.) for some purpose, e.g. the world of 

Semantic Web conferences

• Ontologies must match both domain and task

– Allow the description of the entities (“domain”) whose attributes and 

relations are concerned by some purpose, e.g. research topics as entities 

that are dealt with by a project, worked on by academic staff, and can be 

topic of documents, events, etc.

– Serve a purpose (“task”), e.g. finding persons that work on a same topic, 

matching project topics to staff competencies, time left, available funds, etc.

• Ontologies have a lifecycle

– Are created, evaluated, fixed, and exploited just like any artifact

– Their lifecycle has some original characteristics regarding:

• Data, Project and Workflow Types, Argumentation Structures, Design Patterns



The modular architecture of 
(collaborative) ontology design
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The NeOn C-ODO approach

http://www.loa-cnr.it/ontologies/OD/codolib.owl

Ontologies and language

• Ontologies describe some domain (for some purpose)

• But also natural language can do it

• Ok, but natural languages are appropriate for humans, not for 
machines

• What’s the difference?

– Humans share tacit knowledge (“presuppositions”) that provides the context for 
interpreting natural language utterances and texts

– Some tacit knowledge is general

• “US Army auditor who attacked Halliburton deal is fired”

•  ! auditor is a role played by persons within organizations

•  ! persons can “attack” others by denouncing something (e.g. a deal)

•  ! persons can be “fired” from a position (role)

– Some is local

• “US Army auditor who attacked Halliburton deal is fired”

•  ! denounced the decision to give billions of dollars in Iraq reconstruction contracts to a subsidiary of 
Vice-President Dick Cheney's old company Halliburton

•  ! “She told a congressional hearing that the decision was "the most blatant and improper abuse I 
have witnessed" in 20 years as a government contract supervisor”



Ontologies = controlled terminologies?

• Beware the mismatch between language and conceptualization!

• An ontology may not just be a controlled terminology

• We may have to capture the conceptual schema (or pattern) 
underlying the use of a certain terminology, in order to make it 
reusable for design, interoperability, meaning negotiation, etc.

• Should ontologies be considered reference conceptual schemas?

• Indeed, that was the original motivation for ontologies. Cf. 
Ontolingua library, 1992

– http://www-ksl-svc.stanford.edu:5915

• Nowadays, it’s pretty different

– Thousands of ontologies, many different uses, the most successful are very 
simple (DublinCore, FOAF, WSGeo, ...), huge uptake on folksonomies

• Need for simple schemas, which are close to users’ way of thinking

Pattern-based matching

• Ontology design is presented here as the 
activity of searching, selecting, and composing 
different patterns
– Logical, Reasoning, Architectural, Naming, 

Reengineering, Content
– Common framework to understand modelling 

choices (the "solution space") wrt task- and 
domain-oriented requirements (the "problem 
space")

– They are being collected in the NeOn catalogue 
that will be available at the beginning of 2008



Logical patterns (LPs). Definition

• Logical constructs or composition of them

• LPs are content-independent structures expressed 
only by means of a logical vocabulary (plus possible 
primitives, e.g. “owl:Thing”)

• They can be applied more than once in the same 
ontology in order to solve similar modeling problems

• Logical patterns presented here are specific to OWL 
(DL) 

Some LPs: Subsumption Macros

subsumption by class: bibtex:University instances are also 
bibtex:Organization instances

subsumption by restriction: bibtex:University instances can only have 
bibtex:Department instances as Parts (!)

equivalence by intersection: European universities are universities that are located in Europe



Some LPs: N-ary relation

• How to represent a relation with n arguments

• Cf. W3C SWBPD, logical reification, DLR, UML 
association class

Content Patterns (CPs): Definition

• Instances of LPs or compositions of LPs.

• Domain-dependent

– Expressed with a domain specific (non-logical) vocabulary

• Solve domain modelling problems

• Affect the specific part of the ontology dealing with the 
related domain modelling problem

• Examples:

– PartOf, Participation, Plans, Medical Guidelines, Sales Order, 
Research Topic, Legal Contract, Inflammation, Identity on the 
web, etc.



Some CPs: PartOf

Time-indexed Participation



Role-based Participation

Other applied CPs



Specializing patterns

• Same structure down the taxonomy hierarchy

• A CP p2 specializes another p1 when at least one of the 

classes or properties from p2 is a sub-class or a sub-property 

of some class or property from p1, while the remainder of the 

CP is identical. 

• Participation (of an object in an event)

– Taking part in a public enterprise activities

• Giving a grant to a Semantic Web project

• Co-participation

– Having a social relationship

• Being bunkmates

• Renaming elements of an imported patterns is a bad practice

– Specializing is the way of using CPs

Composing patterns

• Linking sensible classes on the background of a common 
(or integrated) reference ontology

• A CP p2 extends p1 when p2 contains p1, while adding some 
other class, property, or axiom

• A CP p3 integrates p1 and p2 when p3 contains both p1 and 
p2

• A CP p3 merges p1 and p2 when p3 contains both p1 and p2, 
and there exist explicit links between at least two classes or 
properties from both p1 and p2

• BiochemicalTreatment ! (Role⇔Task ° 

Description⇔Situation ° Substance⇔Agent ° Time-

indexedParticipation)



A quick test: the SWC ontology

• Patterns used

– Logical patterns

• N-ary: as in Product 

– Content patterns

• Topic pattern: obeys some tasks, generic 

coverage

– Architectural patterns: Alignment without import to 

schemas used in applications: FOAF, SWRC, 

iCAL, WordNet1.6

– Naming patterns

The “topic” content pattern as extracted 
from the SWRC ontology



Design evaluation

• Coverage: topics, staff, projects, dealt with 
by, worked on by, being a topic of

• Task: reasoning on semantic web entities

• Does athe topic pattern satisfy coverage 
and task requirements?

Best practice check

– Check that names are intuitive

• Antipattern: using a generic name for a subclass of 
class that have a specific name: 

– Artefact subClassOf wn:Document



Counterintuitive naming

Task-based unit test 1

– Finding what documents have a same topic

• Impossible: hasTopic not an inverse of isTopicOf (!), 

• Workaround: use SPARQL query

• Also: Document class detached from the pattern

• Minor problem for task, but implies design 
“sparseness”

• Also: topics related to papers are instances of 
DBpedia:Topic, not from the list of individuals from 
swrc:ResearchTopic

• Fix: equivalence axiom between swrc:ResearchTopic 
and DBpedia:topic



Task-based unit test 2

– Checking that only events can be sub-events 
(“atEvent”) of other events (universal restriction)

• Impossible: Event is not disjoint from e.g. Document

• Consequence: e.g. a document that is said “atEvent” 
of an event, will be an event as well

Task-based unit test 3

– Finding all parts of the proceedings

• Impossible: swc:hasPart and swc:isPartOf are not 
Transitive (and not Inverses)

• Consequence: e.g. a paper that is part of a section of the 
proceedings will not be part of the proceedings; a 
laboratory that is part of a department of a university will 
not be part of the university; that department will not be 
asserted to have the laboratory as part

• Also: no relation between transitive part for events 
(swc:subEvent), and the generic hasPart

• Fix: apply partOf patterns (e.g. SWBPD, DOLCE-Ultralite 
patterns), with Transitive Reduction pattern: transitive 
property as the more generic



Appendix:

Other types of ontology design patterns

Naming Patterns (NPs): Definition

• Conventions about how to create names for 
namespaces, files and ontology elements in 
general (classes, properties, etc.)

• Good practices that boost ontology readability 
and understanding by humans, by supporting 
homogeneity in naming procedures



Examples of NPs

• Class and property names

– A good practice for naming classes and properties is to give them a 

readable name either directly to the class, or to its label (this allows tools to 

visualize hierarchies and diagrams with readable names)

– Usually class names start with a capital letter, and if a class name is 

composed of more than one terms, they are concatenated without special 

characters between such terms and with each term starting with capital 

letter

• e.g., Person, Car, PersonalComputer

– Classes representing elements that are single should not contain plurals. If 

the class name contains plurals, it should represent elements that are 

collections 

• e.g., Nurses, Shoes, etc.

– Usually property names does not start with capital letter, and if a property 

name is composed of more than one terms, they are concatenated without 

special characters between such terms and with each term but the first 

starting with capital letter 

• e.g., hasFriend, hasChild, reads, etc.

Reasoning Patterns (RPs): Definition

• Application of LPs oriented to obtain certain 
inferencing results, based on the behavior 
implemented in a reasoning engine

• They are inference schemas, depending on the 
inference rules defined for a language

• Examples: Classification, Subsumption, 
Inheritance, Materialization, Query result 
construction



Classification and Subsumption RPs

• Automatic classification

– Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))

– Man(John)

– hasFiancee(John,Mary)

– ∴ Yes-Man(John)

• Automatic subsumption

– Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))

– ItalianMan(x) ⇒ Man(x)

– hasFrenchFiancee(x,y) ⇒ hasFiancee(x,y)

– ∴ ((ItalianMan(x) ∧ ∃y(hasFrenchFiancee(x,y)) ⇒ Yes-Man(x))

Inheritance and Materialization RPs

• Inheritance

– Man(x) ⇒ Human(x)

– Yes-Man(x) ⇒ Man(x) 

– ∴ (Yes-Man(x) ⇒ Human(x))

• Materialization

– hasFiancee(x,y) ⇔ hasFiance(y,x)

– hasFiancee(John,Mary)

– ∴ hasFiance(Mary,John)



Architectural Patterns (APs): Definition

• Equivalent to LPs (or compositions of them) that 
are used exclusively in the design of an ontology

• An AP is a content-independent structure

• It is supposed to characterize the overall structure 
of an ontology

• An AP dictates how the ontology should look like

Examples of APs

• Taxonomy

– A hierarchical structure of classes only related by subsumption relations. 

• Lightweight ontology. Taxonomy + other features, e.g.:

– A class can be related to other classes through the disjointWith relation.

– Object and datatype properties can be defined and used to relate classes.

– A specific domain and range can be associated with defined object and 

datatype properties. 

• Modular architecture 

– Structuring an ontology as a configuration of components, each having its 

own identity based on some design criteria

– When an ontology is committed to a huge domain of knowledge, a good 

practice is to decompose the domain into smaller subdomains which 

address simpler tasks

– Each subdomain can be then encoded in an ontology module, in order to 

provide the whole ontology with a modular architecture. 



Stratified MP

• To create a layering of modules, according to some criterion

Domain ontology

{Sculpture,Restoration, Mythical being, Caryatid, Doric order, Armilla, Fresco, …}

       Core ontology (specific domain-independent)

 {Work of art, Painting technique, Author, Artistic period, Plastic art, Interpretation, …}

           Foundational ontology (domain-independent)

{Object, Process, Part, Time, Location, Representation, Plan, …}

Inherits from

Inherits from

Re-engineering Patterns (RePs): Definition

• Transformation rules to be applied in order 
to map elements of a source model (i.e. 
knowledge resource) to elements of a target 
model. 

• The target model is an ontology, while the 
source model can be either an ontology, a 
thesaurus, a DB schema, a UML model, 
etc.



Knowledge resource types

• Modeling Languages:

– E/R, UML, XSD, Petri Nets, ebXML, BPEL4WS 

• Conceptual models:

– Database schemas, UML diagrams, XSD schemas, etc. 

• Informal Data Structures

– Spreadsheets, tables, etc.

• Lexical resources:

– WordNet, FrameNet, Oxford Dictionary, etc.

• Concept Schemes

– Thesauri, classifications, nomenclatures, etc.

• Web 2.0 resources:

– Wikipedia, Flickr, de.li.ci.o.us, etc.

• Natural Language documents

Example of ReP: from thesauri to ontologies 
in SKOS

• KOS ⇒ skos:ConceptSchema

• Descriptor ⇒ skos:Concept

• Broader Term ⇒ skos:broader

• Related Term ⇒ skos:related



Summary

• Interdisciplinary character of ontology design

• Ontology design and ontology evaluation

• Problem space vs. Solution space

– The issue of matching problems to solutions

• Ontology design patterns

– Ontology building blocks

– Allow design by re-engineering, specialization and 
composition

– Support ontology evaluation 

Contribute to the collaborative design effort!

• http://www.ontologydesignpatterns.org

• http://www.neon-project.org

• http://www.w3.org/2001/sw/BestPractices/
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