
Ontology Design

Aldo Gangemi

Laboratory for Applied Ontology

ISTC-CNR, Rome, Italy

aldo.gangemi@istc.cnr.it

Thanks to: Valentina Presutti and the members
of LOA

Outline

• The world of ontology design

• Ontologies and language

• Ontology design components

• Ontology design patterns

• The SWC ontology

• Summary

An ontology designer’s world

• Requirements

• Logical constructs

• Existing ontologies

• Informal knowledge resources

• Conventions and practices

• Tools (editors, reasoners, translators, ...)

The cultural context of ontologies

Logic

Cognitive
and social
sciences

Empirical
sciences

Linguistics,
Semiotics

Computer
science, AI

Web
science

Ontology
engineering

Philosophy

A well-designed ontology ...

• Obeys to “capital questions”:
– What are we talking about?

– Why do we want to talk about it?

– Where to find reusable knowledge?

• Whats, whys and wheres constitute the
Problem Space of an ontology project

• Ontology designers need to find solutions
from a Solution Space

• Matching problems to solutions is not trivial

What is ontology design?

• Ontologies are artifacts

– Have a structure (linguistic, “taxonomical”, logical)

– Their function is to “encode” a description of the world (actual, possible,

counterfactual, impossible, desired, etc.) for some purpose, e.g. the world of

Semantic Web conferences

• Ontologies must match both domain and task

– Allow the description of the entities (“domain”) whose attributes and

relations are concerned by some purpose, e.g. research topics as entities

that are dealt with by a project, worked on by academic staff, and can be

topic of documents, events, etc.

– Serve a purpose (“task”), e.g. finding persons that work on a same topic,

matching project topics to staff competencies, time left, available funds, etc.

• Ontologies have a lifecycle

– Are created, evaluated, fixed, and exploited just like any artifact

– Their lifecycle has some original characteristics regarding:

• Data, Project and Workflow Types, Argumentation Structures, Design Patterns

The modular architecture of
(collaborative) ontology design

Ontology
Project

Collaborative
Workflow

Argumentation
Design

Rationale

Ontology
Design Pattern Ontology Design

Functionality

Ontology-related Data
input

output

Ontology-
design System

The NeOn C-ODO approach

http://www.loa-cnr.it/ontologies/OD/codolib.owl

Ontologies and language

• Ontologies describe some domain (for some purpose)

• But also natural language can do it

• Ok, but natural languages are appropriate for humans, not for
machines

• What’s the difference?

– Humans share tacit knowledge (“presuppositions”) that provides the context for
interpreting natural language utterances and texts

– Some tacit knowledge is general

• “US Army auditor who attacked Halliburton deal is fired”

• ! auditor is a role played by persons within organizations

• ! persons can “attack” others by denouncing something (e.g. a deal)

• ! persons can be “fired” from a position (role)

– Some is local

• “US Army auditor who attacked Halliburton deal is fired”

• ! denounced the decision to give billions of dollars in Iraq reconstruction contracts to a subsidiary of
Vice-President Dick Cheney's old company Halliburton

• ! “She told a congressional hearing that the decision was "the most blatant and improper abuse I
have witnessed" in 20 years as a government contract supervisor”

Ontologies = controlled terminologies?

• Beware the mismatch between language and conceptualization!

• An ontology may not just be a controlled terminology

• We may have to capture the conceptual schema (or pattern)
underlying the use of a certain terminology, in order to make it
reusable for design, interoperability, meaning negotiation, etc.

• Should ontologies be considered reference conceptual schemas?

• Indeed, that was the original motivation for ontologies. Cf.
Ontolingua library, 1992

– http://www-ksl-svc.stanford.edu:5915

• Nowadays, it’s pretty different

– Thousands of ontologies, many different uses, the most successful are very
simple (DublinCore, FOAF, WSGeo, ...), huge uptake on folksonomies

• Need for simple schemas, which are close to users’ way of thinking

Pattern-based matching

• Ontology design is presented here as the
activity of searching, selecting, and composing
different patterns
– Logical, Reasoning, Architectural, Naming,

Reengineering, Content
– Common framework to understand modelling

choices (the "solution space") wrt task- and
domain-oriented requirements (the "problem
space")

– They are being collected in the NeOn catalogue
that will be available at the beginning of 2008

Logical patterns (LPs). Definition

• Logical constructs or composition of them

• LPs are content-independent structures expressed
only by means of a logical vocabulary (plus possible
primitives, e.g. “owl:Thing”)

• They can be applied more than once in the same
ontology in order to solve similar modeling problems

• Logical patterns presented here are specific to OWL
(DL)

Some LPs: Subsumption Macros

subsumption by class: bibtex:University instances are also
bibtex:Organization instances

subsumption by restriction: bibtex:University instances can only have
bibtex:Department instances as Parts (!)

equivalence by intersection: European universities are universities that are located in Europe

Some LPs: N-ary relation

• How to represent a relation with n arguments

• Cf. W3C SWBPD, logical reification, DLR, UML
association class

Content Patterns (CPs): Definition

• Instances of LPs or compositions of LPs.

• Domain-dependent

– Expressed with a domain specific (non-logical) vocabulary

• Solve domain modelling problems

• Affect the specific part of the ontology dealing with the
related domain modelling problem

• Examples:

– PartOf, Participation, Plans, Medical Guidelines, Sales Order,
Research Topic, Legal Contract, Inflammation, Identity on the
web, etc.

Some CPs: PartOf

Time-indexed Participation

Role-based Participation

Other applied CPs

Specializing patterns

• Same structure down the taxonomy hierarchy

• A CP p2 specializes another p1 when at least one of the

classes or properties from p2 is a sub-class or a sub-property

of some class or property from p1, while the remainder of the

CP is identical.

• Participation (of an object in an event)

– Taking part in a public enterprise activities

• Giving a grant to a Semantic Web project

• Co-participation

– Having a social relationship

• Being bunkmates

• Renaming elements of an imported patterns is a bad practice

– Specializing is the way of using CPs

Composing patterns

• Linking sensible classes on the background of a common
(or integrated) reference ontology

• A CP p2 extends p1 when p2 contains p1, while adding some
other class, property, or axiom

• A CP p3 integrates p1 and p2 when p3 contains both p1 and
p2

• A CP p3 merges p1 and p2 when p3 contains both p1 and p2,
and there exist explicit links between at least two classes or
properties from both p1 and p2

• BiochemicalTreatment ! (Role⇔Task °

Description⇔Situation ° Substance⇔Agent ° Time-

indexedParticipation)

A quick test: the SWC ontology

• Patterns used

– Logical patterns

• N-ary: as in Product

– Content patterns

• Topic pattern: obeys some tasks, generic

coverage

– Architectural patterns: Alignment without import to

schemas used in applications: FOAF, SWRC,

iCAL, WordNet1.6

– Naming patterns

The “topic” content pattern as extracted
from the SWRC ontology

Design evaluation

• Coverage: topics, staff, projects, dealt with
by, worked on by, being a topic of

• Task: reasoning on semantic web entities

• Does athe topic pattern satisfy coverage
and task requirements?

Best practice check

– Check that names are intuitive

• Antipattern: using a generic name for a subclass of
class that have a specific name:

– Artefact subClassOf wn:Document

Counterintuitive naming

Task-based unit test 1

– Finding what documents have a same topic

• Impossible: hasTopic not an inverse of isTopicOf (!),

• Workaround: use SPARQL query

• Also: Document class detached from the pattern

• Minor problem for task, but implies design
“sparseness”

• Also: topics related to papers are instances of
DBpedia:Topic, not from the list of individuals from
swrc:ResearchTopic

• Fix: equivalence axiom between swrc:ResearchTopic
and DBpedia:topic

Task-based unit test 2

– Checking that only events can be sub-events
(“atEvent”) of other events (universal restriction)

• Impossible: Event is not disjoint from e.g. Document

• Consequence: e.g. a document that is said “atEvent”
of an event, will be an event as well

Task-based unit test 3

– Finding all parts of the proceedings

• Impossible: swc:hasPart and swc:isPartOf are not
Transitive (and not Inverses)

• Consequence: e.g. a paper that is part of a section of the
proceedings will not be part of the proceedings; a
laboratory that is part of a department of a university will
not be part of the university; that department will not be
asserted to have the laboratory as part

• Also: no relation between transitive part for events
(swc:subEvent), and the generic hasPart

• Fix: apply partOf patterns (e.g. SWBPD, DOLCE-Ultralite
patterns), with Transitive Reduction pattern: transitive
property as the more generic

Appendix:

Other types of ontology design patterns

Naming Patterns (NPs): Definition

• Conventions about how to create names for
namespaces, files and ontology elements in
general (classes, properties, etc.)

• Good practices that boost ontology readability
and understanding by humans, by supporting
homogeneity in naming procedures

Examples of NPs

• Class and property names

– A good practice for naming classes and properties is to give them a

readable name either directly to the class, or to its label (this allows tools to

visualize hierarchies and diagrams with readable names)

– Usually class names start with a capital letter, and if a class name is

composed of more than one terms, they are concatenated without special

characters between such terms and with each term starting with capital

letter

• e.g., Person, Car, PersonalComputer

– Classes representing elements that are single should not contain plurals. If

the class name contains plurals, it should represent elements that are

collections

• e.g., Nurses, Shoes, etc.

– Usually property names does not start with capital letter, and if a property

name is composed of more than one terms, they are concatenated without

special characters between such terms and with each term but the first

starting with capital letter

• e.g., hasFriend, hasChild, reads, etc.

Reasoning Patterns (RPs): Definition

• Application of LPs oriented to obtain certain
inferencing results, based on the behavior
implemented in a reasoning engine

• They are inference schemas, depending on the
inference rules defined for a language

• Examples: Classification, Subsumption,
Inheritance, Materialization, Query result
construction

Classification and Subsumption RPs

• Automatic classification

– Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))

– Man(John)

– hasFiancee(John,Mary)

– ∴ Yes-Man(John)

• Automatic subsumption

– Yes-Man(x) =df Man(x) ∧ ∃y(hasFiancee(x,y))

– ItalianMan(x) ⇒ Man(x)

– hasFrenchFiancee(x,y) ⇒ hasFiancee(x,y)

– ∴ ((ItalianMan(x) ∧ ∃y(hasFrenchFiancee(x,y)) ⇒ Yes-Man(x))

Inheritance and Materialization RPs

• Inheritance

– Man(x) ⇒ Human(x)

– Yes-Man(x) ⇒ Man(x)

– ∴ (Yes-Man(x) ⇒ Human(x))

• Materialization

– hasFiancee(x,y) ⇔ hasFiance(y,x)

– hasFiancee(John,Mary)

– ∴ hasFiance(Mary,John)

Architectural Patterns (APs): Definition

• Equivalent to LPs (or compositions of them) that
are used exclusively in the design of an ontology

• An AP is a content-independent structure

• It is supposed to characterize the overall structure
of an ontology

• An AP dictates how the ontology should look like

Examples of APs

• Taxonomy

– A hierarchical structure of classes only related by subsumption relations.

• Lightweight ontology. Taxonomy + other features, e.g.:

– A class can be related to other classes through the disjointWith relation.

– Object and datatype properties can be defined and used to relate classes.

– A specific domain and range can be associated with defined object and

datatype properties.

• Modular architecture

– Structuring an ontology as a configuration of components, each having its

own identity based on some design criteria

– When an ontology is committed to a huge domain of knowledge, a good

practice is to decompose the domain into smaller subdomains which

address simpler tasks

– Each subdomain can be then encoded in an ontology module, in order to

provide the whole ontology with a modular architecture.

Stratified MP

• To create a layering of modules, according to some criterion

Domain ontology

{Sculpture,Restoration, Mythical being, Caryatid, Doric order, Armilla, Fresco, …}

 Core ontology (specific domain-independent)

 {Work of art, Painting technique, Author, Artistic period, Plastic art, Interpretation, …}

 Foundational ontology (domain-independent)

{Object, Process, Part, Time, Location, Representation, Plan, …}

Inherits from

Inherits from

Re-engineering Patterns (RePs): Definition

• Transformation rules to be applied in order
to map elements of a source model (i.e.
knowledge resource) to elements of a target
model.

• The target model is an ontology, while the
source model can be either an ontology, a
thesaurus, a DB schema, a UML model,
etc.

Knowledge resource types

• Modeling Languages:

– E/R, UML, XSD, Petri Nets, ebXML, BPEL4WS

• Conceptual models:

– Database schemas, UML diagrams, XSD schemas, etc.

• Informal Data Structures

– Spreadsheets, tables, etc.

• Lexical resources:

– WordNet, FrameNet, Oxford Dictionary, etc.

• Concept Schemes

– Thesauri, classifications, nomenclatures, etc.

• Web 2.0 resources:

– Wikipedia, Flickr, de.li.ci.o.us, etc.

• Natural Language documents

Example of ReP: from thesauri to ontologies
in SKOS

• KOS ⇒ skos:ConceptSchema

• Descriptor ⇒ skos:Concept

• Broader Term ⇒ skos:broader

• Related Term ⇒ skos:related

Summary

• Interdisciplinary character of ontology design

• Ontology design and ontology evaluation

• Problem space vs. Solution space

– The issue of matching problems to solutions

• Ontology design patterns

– Ontology building blocks

– Allow design by re-engineering, specialization and
composition

– Support ontology evaluation

Contribute to the collaborative design effort!

• http://www.ontologydesignpatterns.org

• http://www.neon-project.org

• http://www.w3.org/2001/sw/BestPractices/

Some references

Alexander, C.: The Timeless way of building. Oxford University Press, New York (1979).

Catenacci, C., A. Gangemi, J. Lehmann, M. Nissim, V. Presutti, G. Steve, N. Guarino, C. Masolo, H. Lewen, K. Dellschaft, and M. Sabou. NeOn Deliverable D2.1.1

Design rationales for collaborative development of networked ontologies - State of the art and the Collaborative Ontology Design Ontology. February 2007. Available at:

http://www.neon-project.org.

Clark, P., Thompson, J., Porter, B.: Knowledge Patterns. KR2000 (2000).

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (1995).

Gangemi, A., Catenacci, C., Battaglia, M. Inflammation Ontology Design Pattern: an Exercise in Building a Core Biomedical Ontology with Descriptions and Situations”, in

Pisanelli D. (ed.), Biomedical Ontologies, IOS Press, Amsterdam, 2004.

Gangemi, A. Ontology Design Patterns for Semantic Web Content. Musen et al. (eds.): Proceedings of the Fourth International Semantic Web Conference, Galway,
Ireland, 2005. Springer.

Gangemi, A, C. Catenacci, M. Ciaramita, J. Lehmann. Ontology evaluation and validation: an integrated formal model for the quality diagnostic task. 2005. Deliverable for

ONTODEV project. Available at: http://www.loacnr.it/Files/OntoEval4OntoDev_Final.pdf.

Gangemi, A., V. Presutti. Ontology Design for Interaction in a Reasonable Enterprise. Staab et al. (eds.): Handbook of Ontologies for Business Interaction, 2007. IGI

Global.

Gangemi, A., V. Presutti. Ontology Design Patterns. Staab et al. (eds.): Handbook of Ontologies (2nd Edition), to appear. Springer.

Gruninger, M., and Fox, M.S.: The Role of Competency Questions in Enterprise Engineering. Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory and

Practice, Trondheim, Norway (1994).

Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An Ontologically Well-Founded Profile for UML Conceptual Models. A. Persson, J. Stirna (eds.) Advanced

Information Systems Engineering, Proceedings of16th CAiSE Conference, Riga, Springer (2004).
Haase, P, S. Rudolph, Y. Wang, S. Brockmans, R. Palma, and J. Euzenat, M. d'Aquin. NeOn Deliverable D1.1.1 Networked Ontology Model. November 2006. Available

at: http://www.neon-project.org.

Masolo, C., A. Gangemi, N. Guarino, A. Oltramari and L. Schneider: WonderWeb Deliverable D18: The WonderWeb Library of Foundational Ontologies (2004).

Masolo, C., L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi and N. Guarino: Social Roles and their Descriptions. Procedings of the Ninth International

Conference on the Principles of Knowledge Representation and Reasoning, Whistler (2004).

Noy, N.: Representing Classes As Property Values on the Semantic Web. W3C Note, http://www.w3.org/2001/sw/BestPractices/OEP/ClassesAsValues-20050405/

(2005).

Noy, N, A. Rector. Defining N-ary Relations on the Semantic Web. W3C Working Group Note. 2006.

Pan, JF, L. Lancieri, D. Maynard, F. Gandon, R. Cuel, and A. Leger. Knowledge Web Deliverable D1.4.2.v2. Success Stories and Best Practices. January 2007. Available

at: http://www.csd.abdn.ac.uk/~jpan/pub/TR/D142v2-final.pdf.
Pinto, S, S. Staab, C. Tempich. DILIGENT: Towards a Fine-Grained Methodology towards Distributed, Loosely-Controlled and Evolving Engineering of Ontologies. ECAI

2004.

Rector, A.L., Rogers, J.:Patterns, Properties and Minimizing Commitment: Reconstruction of the GALEN Upper Ontology in OWL, in (Gangemi and Borgo 2004) (2004).

Sabou, M, V. Lopez, E. Motta. Ontology Selection on the Real Semantic Web: How to Cover the Queens Birthday Dinner? In Proceedings of the European Knowledge

Acquisition Workshop (EKAW), Podebrady, Czech Republic (2006).

Shum, SB, E. Motta, and J. Domingue. Augmenting Design Deliberation with Compendium: The Case of Collaborative Ontology Design. Position paper at the Workshop

on Facilitating Hypertext Collaborative Modelling in conjunction with ACM Hypertext Conference, Maryland, June 11-12, 2002.

Svatek V.: Design Patterns for Semantic Web Ontologies: Motivation and Discussion. In: 7th Conference on Business Information Systems, Poznan (2004).

Welty, C.: Semantic Web Best Practices and Deployment Working Group, Task Force on Ontology Engineering Patterns. Description of work, archives, W3C Notes and

recommendations available from http://www.w3.org/2001/sw/BestPractices/OEP/ (2004-5).

